Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Perioper Med (Lond) ; 13(1): 27, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594738

RESUMO

As patients continue to live longer from diseases that predispose them to right ventricular (RV) dysfunction or failure, many more patients will require surgery for acute or chronic health issues. Because RV dysfunction results in significant perioperative morbidity if not adequately assessed or managed, understanding appropriate assessment and treatments is important in preventing subsequent morbidity and mortality in the perioperative period. In light of the epidemiology of right heart disease, a working knowledge of right heart anatomy and physiology and an understanding of the implications of right-sided heart function for perioperative care are essential for perioperative practitioners. However, a significant knowledge gap exists concerning this topic. This manuscript is one part of a collection of papers from the PeriOperative Quality Initiative (POQI) IX Conference focusing on "Current Perspectives on the Right Heart in the Perioperative Period." This review aims to provide perioperative clinicians with an essential understanding of right heart physiology by answering five key questions on this topic and providing an explanation of seven fundamental concepts concerning right heart physiology.

2.
ERJ Open Res ; 10(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38348243

RESUMO

Background: Post-acute sequelae of COVID-19 (PASC) affect a significant proportion of patients who have previously contracted SARS-CoV-2, with exertional intolerance being a prominent symptom. This study aimed to characterise the invasive haemodynamic abnormalities of PASC-related exertional intolerance using invasive cardiopulmonary exercise testing (iCPET). Study design and intervention: 55 patients were recruited from the Yale Post-COVID-19 Recovery Program, with most experiencing mild acute illness. Supine right heart catheterisation and iCPET were performed on all participants. Main results: The majority (75%) of PASC patients exhibited impaired peak systemic oxygen extraction (pEO2) during iCPET in conjunction with supranormal cardiac output (CO) (i.e., PASC alone group). On average, the PASC alone group exhibited a "normal" peak exercise capacity, V'O2 (89±18% predicted). ∼25% of patients had evidence of central cardiopulmonary pathology (i.e., 12 with resting and exercise heart failure with preserved ejection fraction (HFpEF) and two with exercise pulmonary hypertension (PH)). PASC patients with HFpEF (i.e., PASC HFpEF group) exhibited similarly impaired pEO2 with well compensated PH (i.e., peak V'O2 and CO >80% respectively) despite aberrant central cardiopulmonary exercise haemodynamics. PASC patients with HFpEF also exhibited increased body mass index of 39±7 kg·m-2. To examine the relative contribution of obesity to exertional impairment in PASC HFpEF, a control group comprising obese non-PASC group (n=61) derived from a historical iCPET cohort was used. The non-PASC obese patients with preserved peak V'O2 (>80% predicted) exhibited a normal peak pulmonary artery wedge pressure (17±14 versus 25±6 mmHg; p=0.03) with similar maximal voluntary ventilation (90±12 versus 86±10% predicted; p=0.53) compared to PASC HFpEF patients. Impaired pEO2 was not significantly different between PASC patients who underwent supervised rehabilitation and those who did not (p=0.19). Conclusions: This study highlights the importance of considering impaired pEO2 in PASC patients with persistent exertional intolerance unexplained by conventional investigative testing. Results of the current study also highlight the prevalence of a distinct high output HFpEF phenotype in PASC with a primary peripheral limitation to exercise.

3.
J Intensive Care Med ; : 8850666231216889, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38031338

RESUMO

Right heart (RH) failure carries a high rate of morbidity and mortality. Patients who present with RH failure often exhibit complex aberrant cardio-pulmonary physiology with varying presentations. The treatment of RH failure almost always requires care and management from an intensivist. Treatment options for RH failure patients continue to evolve rapidly with multiple options available, including different pharmacotherapies and mechanical circulatory support devices that target various components of the RH circulatory system. An understanding of the normal RH circulatory physiology, treatment, and support options for the RH failure patients is necessary for all intensivists to improve outcomes. The purpose of this review is to provide clinical guidance on the diagnosis and management of RH failure within the intensive care unit setting, and to highlight the different pathophysiological manifestations of RH failure, its hemodynamics, and treatment options available at the disposal of the intensivist.

4.
J Cardiothorac Vasc Anesth ; 37(10): 1929-1937, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37422337

RESUMO

OBJECTIVE: To define in an experimental model the variance, accuracy, precision, and concordance of single-beat measures of right ventricular (RV) contractility and diastolic capacitance relative to conventional reference standards, and apply the methods to a clinical data set. DESIGN: A retrospective, observational analysis of recorded pressure waveforms and RV volume measurements. SETTING: At a university laboratory. PARTICIPANTS: Archived data from previous studies of anesthetized swine and awake patients undergoing clinically-indicated right-heart catheterization. INTERVENTIONS: Recording of RV pressure with simultaneous measurement of RV volume by conductance (swine) or 3-dimensional (3D) echocardiography (humans) during changes in contractility and/or loading conditions. MEASUREMENTS AND MAIN RESULTS: Using experimental data, single-beat measures of RV contractility quantified as end-systolic elastance, and diastolic capacitance quantified as the predicted volume at an end-diastolic pressure of 15 mmHg (V15), were compared to multi-beat, preload- variant, reference standards using correlation, Bland-Altman analysis, and 4-quadrant concordance testing. This analysis indicated that the methods were not directly interchangeable with reference standards, but were sufficiently robust to suggest potential clinical utility. Clinical application supported this potential by demonstrating enhanced assessment of the response to inhaled nitric oxide in patients undergoing diagnostic right-heart catheterization. CONCLUSIONS: Study results supported the possibility of integrating automated RV pressure analysis with RV volume measured by 3D echocardiography to create a comprehensive assessment of RV systolic and diastolic function at the bedside.


Assuntos
Ventrículos do Coração , Disfunção Ventricular Direita , Animais , Humanos , Diástole/fisiologia , Ventrículos do Coração/diagnóstico por imagem , Estudos Retrospectivos , Volume Sistólico/fisiologia , Suínos , Sístole , Função Ventricular Direita/fisiologia , Pressão Ventricular/fisiologia
5.
Int J Mol Sci ; 24(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37298696

RESUMO

This study analyzed microarray data of right ventricular (RV) tissue from rats exposed to pulmonary embolism to understand the initial dynamic transcriptional response to mechanical stress and compare it with experimental pulmonary hypertension (PH) models. The dataset included samples harvested from 55 rats at 11 different time points or RV locations. We performed principal component analysis (PCA) to explore clusters based on spatiotemporal gene expression. Relevant pathways were identified from fast gene set enrichment analysis using PCA coefficients. The RV transcriptomic signature was measured over several time points, ranging from hours to weeks after an acute increase in mechanical stress, and was found to be highly dependent on the severity of the initial insult. Pathways enriched in the RV outflow tracts of rats at 6 weeks after severe PE share many commonalities with experimental PH models, but the transcriptomic signature at the RV apex resembles control tissue. The severity of the initial pressure overload determines the trajectory of the transcriptomic response independent of the final afterload, but this depends on the location where the tissue is biopsied. Chronic RV pressure overload due to PH appears to progress toward similar transcriptomic endpoints.


Assuntos
Hipertensão Pulmonar , Embolia Pulmonar , Ratos , Animais , Ventrículos do Coração/metabolismo , Transcriptoma , Perfilação da Expressão Gênica , Hipertensão Pulmonar/metabolismo , Modelos Animais de Doenças , Remodelação Ventricular
7.
Pulm Circ ; 13(2): e12220, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37091121

RESUMO

Approximately 50% of patients who recover from the acute SARS-CoV-2 experience Post Acute Sequelae of SARS-CoV-2 infection (PASC) syndrome. The pathophysiological hallmark of PASC is characterized by impaired system oxygen extraction (EO2) on invasive cardiopulmonary exercise test (iCPET). However, the mechanistic insights into impaired EO2 remain unclear. We studied 21 consecutive iCPET in PASC patients with unexplained exertional intolerance. PASC patients were dichotomized into mildly reduced (EO2peak-mild) and severely reduced (EO2peak-severe) EO2 groups according to the median peak EO2 value. Proteomic profiling was performed on mixed venous blood plasma obtained at peak exercise during iCPET. PASC patients as a group exhibited depressed peak exercise aerobic capacity (peak VO2; 85 ± 18 vs. 131 ± 45% predicted; p = 0.0002) with normal systemic oxygen delivery, DO2 (37 ± 9 vs. 42 ± 15 mL/kg/min; p = 0.43) and reduced EO2 (0.4 ± 0.1 vs. 0.8 ± 0.1; p < 0.0001). PASC patients with EO2peak-mild exhibited greater DO2 compared to those with EO2peak-severe [42.9 (34.2-41.2) vs. 32.1 (26.8-38.0) mL/kg/min; p = 0.01]. The proteins with increased expression in the EO2peak-severe group were involved in inflammatory and fibrotic processes. In the EO2peak-mild group, proteins associated with oxidative phosphorylation and glycogen metabolism were elevated. In PASC patients with impaired EO2, there exist a spectrum of PASC phenotype related to differential aberrant protein expression and cardio-pulmonary physiologic response. PASC patients with EO2peak-severe exhibit a maladaptive physiologic and proteomic signature consistent with persistent inflammatory state and endothelial dysfunction, while in the EO2peak-mild group, there is enhanced expression of proteins involved in oxidative phosphorylation-mediated ATP synthesis along with an enhanced cardiopulmonary physiological response.

8.
Pulm Circ ; 13(1): e12197, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36814586

RESUMO

Pulmonary hypertension (PH) in interstitial lung disease (ILD) is associated with increased mortality and impaired exertional capacity. Right heart catheterization is the diagnostic standard for PH but is invasive and not readily available. Noninvasive physiologic evaluation may predict PH in ILD. Forty-four patients with PH and ILD (PH-ILD) were compared with 22 with ILD alone (non-PH ILD). Six-min walk distance (6MWD, 223 ± 131 vs. 331 ± 125 m, p = 0.02) and diffusing capacity for carbon monoxide (DLCO, 33 ± 14% vs. 55 ± 21%, p < 0.001) were lower in patients with PH-ILD. PH-ILD patients exhibited a lower gas-exchange derived pulmonary vascular capacitance (GXCAP, 251 ± 132 vs. 465 ± 282 mL × mmHg, p < 0.0001) and extrapolated maximum oxygen uptake (VO2max) (56 ± 32% vs. 84 ± 37%, p = 0.003). Multivariate analysis was performed to determine predictors of VO2 max. GXCAP was the only variable that predicted extrapolated VO2 max among PH-ILD and non-PH ILD patients. Receiver operating characteristic curve analysis assessed the ability of individual noninvasive variables to distinguish between PH-ILD and non-PH ILD patients. GXCAP (area under the curve [AUC] 0.85 ± 0.04, p < 0.0001) and delta ETCO2 (AUC 0.84 ± 0.04, p < 0.0001) were the strongest predictors of PH-ILD. A CART analysis selected GXCAP, estimated right ventricular systolic pressure (eRVSP) by echocardiogram, and FVC/DLCO ratio as predictive variables for PH-ILD. With this analysis, the AUC improved to 0.94 (sensitivity of 0.86 and sensitivity of 0.93). Patients with a GXCAP ≤ 416 mL × mmHg had an 82% probability of PH-ILD. Patients with GXCAP ≤ 416 mL × mmHg and high FVC/DLCO ratio >1.7 had an 80% probability of PH-ILD. Patients with GXCAP ≤ 416 mL × mmHg and an elevated eRVSP by echocardiogram >43 mmHg had 100% probability of PH-ILD. The incorporation of GXCAP with either eRVSP or FVC/DLCO ratio distinguishes between PH-ILD and non-PH-ILD with high probability and may therefore assist in determining the need to proceed with a diagnostic right heart catheterization and potential initiation of pulmonary arterial hypertension-directed therapy in PH-ILD patients.

9.
J Heart Lung Transplant ; 41(9): 1135-1194, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36123001

RESUMO

Pulmonary hypertension (PH) is a risk factor for morbidity and mortality in patients undergoing surgery and anesthesia. This document represents the first international consensus statement for the perioperative management of patients with pulmonary hypertension and right heart failure. It includes recommendations for managing patients with PH being considered for surgery, including preoperative risk assessment, planning, intra- and postoperative monitoring and management strategies that can improve outcomes in this vulnerable population. This is a comprehensive document that includes common perioperative patient populations and surgical procedures with unique considerations.


Assuntos
Insuficiência Cardíaca , Hipertensão Pulmonar , Consenso , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/cirurgia , Humanos , Hipertensão Pulmonar/epidemiologia , Hipertensão Pulmonar/cirurgia , Medição de Risco , Fatores de Risco
11.
ESC Heart Fail ; 9(2): 1436-1443, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35150211

RESUMO

AIMS: A method for estimating right ventricular ejection fraction (RVEF) from RV pressure waveforms was recently validated in an experimental model. Currently, cardiac magnetic resonance imaging (MRI) is the clinical reference standard for measurement of RVEF in pulmonary arterial hypertension (PAH). The present study was designed to test the hypothesis that the pressure-based method can detect clinically significant reductions in RVEF as determined by cardiac MRI in patients with PAH. METHODS AND RESULTS: RVEF estimates derived from analysis of RV pressure waveforms recorded during right heart catheterization (RHC) in 25 patients were compared with cardiac MRI measurements of RVEF obtained within 24 h. Three investigators blinded to cardiac MRI results independently performed pressure-based RVEF estimation with the mean of their results used for comparison. Linear regression was used to assess correlation, and a receiver operator characteristic (ROC) curve was derived to define ability of the pressure-based method to detect a maladaptive RV response, defined as RVEF <35% on cardiac MRI. In 23 patients, an automated adaptation of the pressure-based RVEF method was also applied as proof of concept for beat-to-beat RVEF monitoring. The study cohort was comprised of 16 female and 9 male PAH patients with an average age of 53 ± 13 years. RVEF measured by cardiac MRI ranged from 16% to 57% (mean 37.7 ± 11.6%), and estimated RVEF from 15% to 54% (mean 36.2 ± 11.2%; P = 0.6). Measured and estimated RVEF were significantly correlated (r2  = 0.78; P < 0.0001). ROC curve analysis demonstrated an area under the curve of 0.94 ± 0.04 with a sensitivity of 81% and specificity of 85% for predicting a maladaptive RV response. As a secondary outcome, with the recognized limitation of non-coincident measures, Bland-Altman analysis was performed and indicated minimal bias for estimated RVEF (-1.5%) with limits of agreement of ± 10.9%. Adaptation of the pressure-based estimation method to provide beat-to-beat RVEF also demonstrated significant correlation between the median beat-to-beat value over 10 s with cardiac MRI (r2  = 0.66; P < 0.001), and an area under the ROC curve of 0.94 ± 0.04 (CI = 0.86 to 1.00) with sensitivity and specificity of 78% and 86%, respectively, for predicting a maladaptive RV response. CONCLUSIONS: Pressure-based estimation of RVEF correlates with cardiac MRI and detects clinically significant reductions in RVEF. Study results support potential utility of pressure-based RVEF estimation for assessing the response to diagnostic or therapeutic interventions during RHC.


Assuntos
Hipertensão Arterial Pulmonar , Disfunção Ventricular Direita , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Volume Sistólico , Função Ventricular Direita
15.
Chest ; 161(1): 54-63, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34389297

RESUMO

BACKGROUND: Some patients with COVID-19 who have recovered from the acute infection after experiencing only mild symptoms continue to exhibit persistent exertional limitation that often is unexplained by conventional investigative studies. RESEARCH QUESTION: What is the pathophysiologic mechanism of exercise intolerance that underlies the post-COVID-19 long-haul syndrome in patients without cardiopulmonary disease? STUDY DESIGN AND METHODS: This study examined the systemic and pulmonary hemodynamics, ventilation, and gas exchange in 10 patients who recovered from COVID-19 and were without cardiopulmonary disease during invasive cardiopulmonary exercise testing (iCPET) and compared the results with those from 10 age- and sex-matched control participants. These data then were used to define potential reasons for exertional limitation in the cohort of patients who had recovered from COVID-19. RESULTS: The patients who had recovered from COVID-19 exhibited markedly reduced peak exercise aerobic capacity (oxygen consumption [VO2]) compared with control participants (70 ± 11% predicted vs 131 ± 45% predicted; P < .0001). This reduction in peak VO2 was associated with impaired systemic oxygen extraction (ie, narrow arterial-mixed venous oxygen content difference to arterial oxygen content ratio) compared with control participants (0.49 ± 0.1 vs 0.78 ± 0.1; P < .0001), despite a preserved peak cardiac index (7.8 ± 3.1 L/min vs 8.4±2.3 L/min; P > .05). Additionally, patients who had recovered from COVID-19 demonstrated greater ventilatory inefficiency (ie, abnormal ventilatory efficiency [VE/VCO2] slope: 35 ± 5 vs 27 ± 5; P = .01) compared with control participants without an increase in dead space ventilation. INTERPRETATION: Patients who have recovered from COVID-19 without cardiopulmonary disease demonstrate a marked reduction in peak VO2 from a peripheral rather than a central cardiac limit, along with an exaggerated hyperventilatory response during exercise.


Assuntos
COVID-19/complicações , Teste de Esforço/métodos , Tolerância ao Exercício , COVID-19/fisiopatologia , Connecticut , Feminino , Hemodinâmica/fisiologia , Humanos , Masculino , Massachusetts , Pessoa de Meia-Idade , Consumo de Oxigênio/fisiologia , Testes de Função Respiratória , SARS-CoV-2 , Volume Sistólico/fisiologia , Síndrome de COVID-19 Pós-Aguda
16.
Anesth Analg ; 134(5): 1094-1105, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34928890

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has revealed that even the best-resourced hospitals may lack sufficient ventilators to support patients under surge conditions. During a pandemic or mass trauma, an affordable, low-maintenance, off-the-shelf device that would allow health care teams to rapidly expand their ventilator capacity could prove lifesaving, but only if it can be safely integrated into a complex and rapidly changing clinical environment. Here, we define an approach to safe ventilator sharing that prioritizes predictable and independent care of patients sharing a ventilator. Subsequently, we detail the design and testing of a ventilator-splitting circuit that follows this approach and describe our clinical experience with this circuit during the COVID-19 pandemic. This circuit was able to provide individualized and titratable ventilatory support with individualized positive end-expiratory pressure (PEEP) to 2 critically ill patients at the same time, while insulating each patient from changes in the other's condition. We share insights from our experience using this technology in the intensive care unit and outline recommendations for future clinical applications.


Assuntos
COVID-19 , Pandemias , COVID-19/terapia , Humanos , Respiração com Pressão Positiva , Respiração Artificial , Ventiladores Mecânicos
17.
Circ Heart Fail ; 15(1): e009101, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34963308

RESUMO

Right ventricular pressure-volume (PV) analysis characterizes ventricular systolic and diastolic properties independent of loading conditions like volume status and afterload. While long-considered the gold-standard method for quantifying myocardial chamber performance, it was traditionally only performed in highly specialized research settings. With recent advances in catheter technology and more sophisticated approaches to analyze PV data, it is now more commonly used in a variety of clinical and research settings. Herein, we review the basic techniques for PV loop measurement, analysis, and interpretation with the aim of providing readers with a deeper understanding of the strengths and limitations of PV analysis. In the second half of the review, we detail key scenarios in which right ventricular PV analysis has influenced our understanding of clinically relevant topics and where the technique can be applied to resolve additional areas of uncertainty. All told, PV analysis has an important role in advancing our understanding of right ventricular physiology and its contribution to cardiovascular function in health and disease.


Assuntos
Insuficiência Cardíaca/fisiopatologia , Volume Sistólico/fisiologia , Função Ventricular Direita/fisiologia , Pressão Ventricular/fisiologia , Ventrículos do Coração/fisiopatologia , Hemodinâmica/fisiologia , Humanos , Disfunção Ventricular Direita/fisiopatologia , Função Ventricular Esquerda/fisiologia
18.
ERJ Open Res ; 7(3)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34435035

RESUMO

Surrogates of right ventricle (RV) end-systolic pressure (ESP) used to determine RV-pulmonary artery coupling vary across studies. ESP using point of maximal time varying elastance provides most accurate estimate of actual ESP. https://bit.ly/3xuqX3B.

19.
J Pharmacol Toxicol Methods ; 112: 107102, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34245885

RESUMO

Depressed right ventricular ejection fraction (RVEF) has clear prognostic significance in patients with pulmonary arterial hypertension (PAH). Accordingly, improvements in RVEF represent a desirable end-point in the development of PAH therapies. However, current methods for determination of RVEF require measurement of RV volume and are relatively complex and costly. Here, we validate a novel method for quantitative estimation of RVEF in rats based entirely upon analysis of readily available RV pressure waveforms that eliminates the need for simultaneous volume measurement and can be rapidly applied. Right ventricular pressure and volume (conductance catheter) measurements acquired from 15 rats (7 controls, 8 sugen/hypoxia PAH; 220-250 g) were used for the study. Over the same 10 beat interval, RVEF was directly measured from the volume signal and estimated from the pressure signal. Simultaneous measures were compared by linear regression and Bland-Altman analysis to define bias (accuracy) and precision. Measured RVEF ranged from 0.19 to 0.60 (mean 0.44 ± 0.10) and estimated from 0.19 to 0.52 (mean 0.42 ± 0.09). Across the dataset there was strong correlation (r2 = 0.813), with minimal bias (0.01) and an overall error of 20% consistent with acceptable accuracy and precision. Study results support the potential utility of a method based entirely upon analysis of the RV pressure waveform for assessing drug effects on RVEF in rat models of PAH.


Assuntos
Hipertensão Pulmonar , Disfunção Ventricular Direita , Animais , Desenvolvimento de Medicamentos , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Ratos , Roedores , Volume Sistólico , Disfunção Ventricular Direita/induzido quimicamente , Função Ventricular Direita
20.
J Appl Physiol (1985) ; 131(1): 424-433, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34043473

RESUMO

Right ventricular (RV) functional adaptation to afterload determines outcome in pulmonary hypertension (PH). RV afterload is determined by the dynamic interaction between pulmonary vascular resistance (PVR), characteristic impedance (Zc), and wave reflection. Pulmonary vascular impedance (PVZ) represents the most comprehensive measure of RV afterload; however, there is an unmet need for an easier bedside measurement of this complex variable. Although a recent study showed that Zc and wave reflection can be estimated from RV pressure waveform analysis and cardiac output, this has not been validated. Estimations of Zc and wave reflection coefficient (λ) were validated relative to conventional spectral analysis in an animal model. Zc, λ, and the single-beat ratio of end-systolic to arterial elastance (Ees/Ea) to estimate RV-pulmonary arterial (PA) coupling were determined from right heart catheterization (RHC) data. The study included 30 pulmonary artery hypertension (PAH) and 40 heart failure with preserved ejection fraction (HFpEF) patients [20 combined pre- and postcapillary PH (Cpc-PH) and 20 isolated postcapillary PH, (Ipc-PH)]. Also included were 10 age- and sex-matched controls. There was good agreement with minimal bias between estimated and spectral analysis-derived Zc and λ. Zc in PAH and Cpc-PH groups exceeded that in the Ipc-PH group and controls. λ was increased in Ipc-PH (0.84 ± 0.02), Cpc-PH (0.87 ± 0.05), and PAH groups (0.85 ± 0.04) compared with controls (0.79 ± 0.03); all P values were <0.05. λ was the only afterload parameter associated with RV-PA coupling in PAH. In the PH-HFpEF group, RV-PA uncoupling was independent of RV afterload. Our findings indicate that Zc and λ derived from an RV pressure curve can be used to improve estimation of RV afterload. λ is the only afterload measure associated with RV-PA uncoupling in PAH, whereas RV-PA uncoupling in PH-HFpEF appears to be independent of afterload consistent with an inherent abnormality of the RV myocardium.NEW & NOTEWORTHY Pulmonary vascular impedance (PVZ) represents the most comprehensive measure of right ventricle (RV) afterload; however, measurement of this variable is complex. We demonstrate that characteristic impedance (Zc) and a wave reflection coefficient, λ, can be derived from RV pressure waveform analysis. In addition, RV dysfunction in left heart disease is independent of its afterload. The current study provides a platform for future studies to examine the pharmacotherapeutic effects and prognosis of different measures of RV afterload.


Assuntos
Insuficiência Cardíaca , Hipertensão Pulmonar , Disfunção Ventricular Direita , Animais , Ventrículos do Coração , Humanos , Artéria Pulmonar , Volume Sistólico , Função Ventricular Direita
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA